Photo Block Spray to Stop Tickets in the Mail

Tuesday, August 11, 2009

Burkhard Heim Unified Field Theory

Burkhard Heim is hard to grasp to say the least. The man made up his own calculus called Metron to explain his theories. He never learned english so his theories were never published in English until recently.
Burkhard Heim had a remarkable life. Born in 1925 in Potsdam, Germany, he decided at the age of 6 that he wanted to become a rocket scientist. He disguised his designs in code so that no one could discover his secret. And in the cellar of his parents' house, he experimented with high explosives. But this was to lead to disaster.

Towards the end of the second world war, he worked as an explosives developer, and an accident in 1944 in which a device exploded in his hands left him permanently disabled. He lost both his forearms, along with 90 per cent of his hearing and eyesight.

After the war, he attended university in Göttingen to study physics. The idea of propelling a spacecraft using quantum mechanics rather than rocket fuel led him to study general relativity and quantum mechanics. It took an enormous effort. From 1948, his father and wife replaced his senses, spending hours reading papers and transcribing his calculations onto paper. And he developed a photographic memory.

Supporters of Heim theory claim that it is a panacea for the troubles in modern physics. They say it unites quantum mechanics and general relativity, can predict the masses of the building blocks of matter from first principles, and can even explain the state of the universe 13.7 billion years ago.

EVERY year, the American Institute of Aeronautics and Astronautics awards prizes for the best papers presented at its annual conference. Last year's winner in the nuclear and future flight category went to a paper calling for experimental tests of an astonishing new type of engine. According to this paper, this hyperdrive motor would propel a craft through another dimension at enormous speeds. It could leave Earth at lunchtime and get to the moon in time for dinner. There's just one catch: the idea relies on an obscure and largely unrecognised kind of physics. Can they possibly be serious?

The AIAA is certainly not embarrassed. What's more, the US military has begun to cast its eyes over the hyperdrive concept, and a space propulsion researcher at the US Department of Energy's Sandia National Laboratories has said he would be interested in putting the idea to the test. And despite the bafflement of most physicists at the theory that supposedly underpins it, Pavlos Mikellides, an aerospace engineer at the Arizona State University in Tempe who reviewed the winning paper, stands by the committee's choice. "Even though such features have been explored before, this particular approach is quite unique," he says.

Unique it certainly is. If the experiment gets the go-ahead and works, it could reveal new interactions between the fundamental forces of nature that would change the future of space travel. Forget spending six months or more holed up in a rocket on the way to Mars, a round trip on the hyperdrive could take as little as 5 hours. All our worries about astronauts' muscles wasting away or their DNA being irreparably damaged by cosmic radiation would disappear overnight. What's more the device would put travel to the stars within reach for the first time. But can the hyperdrive really get off the ground?

“A hyperdrive craft would put the stars within reach for the first time”

The answer to that question hinges on the work of a little-known German physicist. Burkhard Heim began to explore the hyperdrive propulsion concept in the 1950s as a spin-off from his attempts to heal the biggest divide in physics: the rift between quantum mechanics and Einstein's general theory of relativity.

Quantum theory describes the realm of the very small - atoms, electrons and elementary particles - while general relativity deals with gravity. The two theories are immensely successful in their separate spheres. The clash arises when it comes to describing the basic structure of space. In general relativity, space-time is an active, malleable fabric. It has four dimensions - three of space and one of time - that deform when masses are placed in them. In Einstein's formulation, the force of gravity is a result of the deformation of these dimensions. Quantum theory, on the other hand, demands that space is a fixed and passive stage, something simply there for particles to exist on. It also suggests that space itself must somehow be made up of discrete, quantum elements.

In the early 1950s, Heim began to rewrite the equations of general relativity in a quantum framework. He drew on Einstein's idea that the gravitational force emerges from the dimensions of space and time, but suggested that all fundamental forces, including electromagnetism, might emerge from a new, different set of dimensions. Originally he had four extra dimensions, but he discarded two of them believing that they did not produce any forces, and settled for adding a new two-dimensional "sub-space" onto Einstein's four-dimensional space-time.

In Heim's six-dimensional world, the forces of gravity and electromagnetism are coupled together. Even in our familiar four-dimensional world, we can see a link between the two forces through the behaviour of fundamental particles such as the electron. An electron has both mass and charge. When an electron falls under the pull of gravity its moving electric charge creates a magnetic field. And if you use an electromagnetic field to accelerate an electron you move the gravitational field associated with its mass. But in the four dimensions we know, you cannot change the strength of gravity simply by cranking up the electromagnetic field.

In Heim's view of space and time, this limitation disappears. He claimed it is possible to convert electromagnetic energy into gravitational and back again, and speculated that a rotating magnetic field could reduce the influence of gravity on a spacecraft enough for it to take off.

When he presented his idea in public in 1957, he became an instant celebrity. Wernher von Braun, the German engineer who at the time was leading the Saturn rocket programme that later launched astronauts to the moon, approached Heim about his work and asked whether the expensive Saturn rockets were worthwhile. And in a letter in 1964, the German relativity theorist Pascual Jordan, who had worked with the distinguished physicists Max Born and Werner Heisenberg and was a member of the Nobel committee, told Heim that his plan was so important "that its successful experimental treatment would without doubt make the researcher a candidate for the Nobel prize".

But all this attention only led Heim to retreat from the public eye. This was partly because of his severe multiple disabilities, caused by a lab accident when he was still in his teens. But Heim was also reluctant to disclose his theory without an experiment to prove it. He never learned English because he did not want his work to leave the country. As a result, very few people knew about his work and no one came up with the necessary research funding. In 1958 the aerospace company Bölkow did offer some money, but not enough to do the proposed experiment.

While Heim waited for more money to come in, the company's director, Ludwig Bölkow, encouraged him to develop his theory further. Heim took his advice, and one of the results was a theorem that led to a series of formulae for calculating the masses of the fundamental particles - something conventional theories have conspicuously failed to achieve. He outlined this work in 1977 in the Max Planck Institute's journal Zeitschrift für Naturforschung, his only peer-reviewed paper. In an abstruse way that few physicists even claim to understand, the formulae work out a particle's mass starting from physical characteristics, such as its charge and angular momentum.

Yet the theorem has proved surprisingly powerful. The standard model of physics, which is generally accepted as the best available theory of elementary particles, is incapable of predicting a particle's mass. Even the accepted means of estimating mass theoretically, known as lattice quantum chromodynamics, only gets to between 1 and 10 per cent of the experimental values.
To be cont' Source

Originally published From issue 2533 of New Scientist magazine, 05 January 2006, page 24

AscensionEnergyProgram.com based on the theories of Burkhard Heim.

No comments:

Post a Comment